Impact of divertor target material on recycling and discharge fueling during the full ELM cycle

University of California San Diego, La Jolla, CA, USA
‡Oak Ridge Associated Universities, 1299 Bethel Valley Rd, Oak Ridge, TN 37830, USA
§Aalto University, P.O. Box 11000, FI-00076 AALTO, Finland
§Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
§General Atomics, 3550 General Atomics Ct, San Diego, CA 92121, USA
§Sandia National Laboratories, Albuquerque, NM and Livermore, CA, USA
§Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN 37830, US

ibykov@ucsd.edu

Simultaneous ELM-resolved measurements of Balmer-α and Fulcher-band radiation from both D atoms and D₂ molecules, respectively, recycling at the outer strike point (OSP) were conducted in DIII-D during Metal Rings Campaign (MRC). The MRC involved operation with two toroidally continuous rings of W-covered TZM (Mo alloy with 0.5% titanium and 0.08% zirconium) inserts in the lower divertor. It was found that the relative fraction F of D atoms originating from D₂ molecules in the total recycling D flux changes during ELMs. Between ELMs, F on carbon and on tungsten is $F_C \sim 60\%$ and $F_W \sim 85\%$, respectively, consistent with expectations if all atomic recycling is due to reflections. During ELMs, F dropped to $F_C \sim 40\%$ and $F_W \sim 60\%$.

This effect has been studied with a variety of samples (C, Mo, uncoated and W-coated TZM, W, W fuzz, and Ti) exposed using Divertor Material Evaluation System (DiMES) manipulator in the lower divertor near an attached outer strike point in L-mode discharges. External voltage bias of square waveform between $+10$ V and -150 V with frequency 10 Hz was applied to the sample to investigate the dependence of atomic and molecular recycling on the D⁺ ion impact energy (E_i). It was found that an increase of E_i by ~ 160 eV due to the bias leads to a transient increase of the recycling fraction above unity, similar to [1]. The flux of D₂ in contrast to D only showed a transient increase on C where ion induced D₂ desorption is an important channel of D₂ re emission [2]. Thus, the surface material and the ion impact energy as well as the surface temperature [3] are important factors in controlling the fraction of recycling molecules. This result has implications for both divertor detachment and pedestal fueling, as reflecting D atoms have longer ionization length and contribute to density pedestal recovery after an ELM. D₂ molecules, on the other hand, aid detachment and produce cold Frank-Condon atoms upon dissociation. During the MRC, with the total fraction of the W-covered area on each metal ring $\sim 0.6\%$ of the total wall area, the effect of W in the divertor could be seen in a $\sim 10\%$ increase of the line averaged density when OSP was placed on the W ring. This is qualitatively similar to what was seen on ASDEX upon a complete change from C to W PFCs [4]. We also present results of EDGE2D-EIRENE simulation assessing the effect of adding W in the divertor on divertor fueling and modification of the temperature and density profiles.

*Work supported by the US DOE under DE-FG02-07ER54917, DE-FC02-04ER54698, DE-AC04-94-AL85000, DE-AC05-00OR22725, DE-AC05-07NA27344.