Influence of recombination front region on plasma detachment in a linear divertor plasma simulator

Graduate School of Engineering, Nagoya University, Furo-cho, Nagoya 464-8603, Japan
a Institute of Materials and Systems for Sustainability, Nagoya University, Furo-cho, Nagoya 464-8603, Japan
b Faculty of Engineering, Shinshu University, 4-17-1, Wakasato, Nagano 380-8553, Japan
c College of Industrial Technology, Nihon University, 1-2-1 Izumi-cho, Narashino, 275-8575, Japan
d Plasma Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577 Japan
e FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, 5612 AJ Eindhoven, Netherlands

Various researches on plasma detachment are currently underway through complementary studies with magnetically confined fusion devices, linear diverter plasma simulators[1], and numerical simulations in order to control heat and particle loads on plasma-facing components. It has been investigated in the linear divertor plasma simulator NAGDIS-II that recombination front (RF) region, in which volume recombination strongly occurs in a detached plasma, has strong influence on the characteristics of plasma detachment. Detailed observation of plasma profiles and dynamical behaviors around the RF was conducted using newly developed two-dimensional driving Langmuir probe (2-D LP) as well as a laser Thomson scattering (LTS) diagnostics[2]. The LTS system, developed with international collaboration of DIFFER, is enable to measure electron temperature (T_e) less than 0.5 eV. LTS data can be utilized to calibrate 2-D LP data. Plasma fluctuations near RF were measured with a microwave interferometer (MI).

In a detached plasma, axial and radial profiles obtained with the 2-D LP show monotonically decreasing electron density (n_e) and T_e along the central region of plasma column. On the other hand, in the peripheral region of the plasma column, n_e peaks near the RF, which means a strong local cross-field transport from the central to peripheral region exists near the RF. Plasma instability accompanied with strong n_e fluctuation was observed by MI near RF[3]. The instability leads to the enhancement of the cross-field plasma transport near RF in a detached plasma. The local enhancement of the cross-field plasma transport also changes the plasma flow pattern, showing that inverse plasma flow along the magnetic field at the peripheral region of plasma column appeared[4].

We have also investigated the effects of magnetic field structure on RF by simulating magnetically expanding and contracting plasmas[5]. The total ion particle flux measured with a large-diameter target plate dramatically changed under the detached plasma condition compared to that in attached plasma. Under the detached plasma condition, the magnetically expanding plasma clearly exhibited a significant degradation of detached plasma formation.